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Global aspects in the algebraic approach to the genetic code

Michael Forger
Departamento de Matema´tica Aplicada, Instituto de Matema´tica e Estatı´stica, Universidade de Sa˜o Paulo, Caixa Postal 66281,

05315-970 Sa˜o Paulo, São Paulo, Brazil

Yvone M. M. Hornos
SAPRA, Rua Douter Orlando Damiano 2160, 13560-990 Sa˜o Carlos, São Paulo, Brazil
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The algebraic approach to the genetic code is further developed to incorporate global properties. As a result
strong restrictions on the possibilities of assignment of amino acids and codons to representation vectors are
found. Extending the search for symmetry breaking schemes to include nonconnected subgroups, a possibility
is found based on the exceptional group G2. @S1063-651X~97!06311-3#
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Finding an explanation for the observed degeneracie
the genetic code, or more precisely, in the assignmen
codons to amino acids, as shown in Table I, has bee
long-standing problem in molecular biology. These deg
eracies are an immediate consequence of the fact that ge
information is stored in DNA and RNA in the form of 6
codons, which are triplets built from the four nucleic bas
adenine (A), cytosine (C), guanine (G), and thymine~T, in
DNA! or uracil ~U, in RNA!, whereas only 20 amino acid
occur in biologically synthesized proteins. The problem
the evolution of the genetic code has been extensively
cussed in the literature, for example, by Jukes and
workers@1#, with emphasis on the relation between codo
and anticodons and on the conclusions that can be draw
comparing the standard code with exceptional codes, suc
the ones observed in mitochondria.

An alternative approach has recently been sugge
@2,3#, based on the notion of symmetry breaking@4,5#, which
over the last few decades has been widely used in par
physics@6#, nuclear physics@7#, and molecular physics@8#.
The phenomenon is also observed in chemical and biolog
systems; as an example, we may think of the breakdow
chiral invariance. There are various types of symmetry p
ciples that are important in different areas of science, on
the most interesting being the notion of dynamical symm
try: it may not be directly visible in the equations of motio
or the Hamiltonian of the system but nevertheless seve
restricts its dynamics. As an example, consider the SO~4!
symmetry in the Kepler-Coulomb problem, generated by
gular momentum together with the Runge-Lenz vect
which is responsible for the fact that the bounded trajecto
of the classical Kepler problem are closed orbits and that
quantum mechanical bound states of the hydrogen atom
degenerate not only with the magnetic quantum numbem
but also with the angular momentum quantum numbel .
When this symmetry is broken, there appear phenom
such as perihelion rotation or splitting of spectral lines.
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The central idea of the algebraic approach to the gen
code is that the presence of synonymous codons expre
invariance of the translation process under the interchang
codons assigned to the same amino acid and reflects the
ence of a dynamical symmetry. In order to implement t
picture, a systematic search for possible symmetry break
schemes has been performed, based on the Cartan class
tion theorem for complex semisimple Lie algebras, by sta
ing out with a 64-dimensional irreducible representation o
given simple Lie algebra~there are just a few of these, whic
will be referred to as codon representations! and decompos-
ing it along all possible chains of maximal subalgebras. I
first stage, these chains can be pursued until one reach
direct sum of su~2! subalgebras, the result being that there
no chain that would allow one to reproduce exactly the d

TABLE I. The standard genetic code.

First
base

Second base
Third
baseU C A G

Phe Ser Tyr Cys U
U Phe Ser Tyr Cys C

Leu Ser Term Term A
Leu Ser Term Trp G
Leu Pro His Arg U

C Leu Pro His Arg C
Leu Pro Gln Arg A
Leu Pro Gln Arg G
Ile Thr Asn Ser U

A Ile Thr Asn Ser C
Ile Thr Lys Arg A

Met Thr Lys Arg G
Val Ala Asp Gly U

G Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G
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TABLE II. Branching rules in the sp~6! chain. The symbol ‘‘hw’’ means ‘‘highest weight,’’
whereassi andmi denote the spin and the magnetic quantum number with respect to thei th su~2!.
The shading indicates the multiplets, which in the last step are frozen.
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generacies of the genetic code. Therefore, a second stage
considered, in which the su~2! subalgebras are allowed t
break into Abelian u~1! subalgebras, imposing that the stat
involved should be labeled in one of two ways: as eigenv
tors of Lz or of Lz

2. In the first case, the degeneracy is co
pletely lifted, whereas in the second case, states with ‘‘m
netic quantum number’’1m and 2m remain degenerate
With this prescription, it was shown that the degeneracie
the genetic code can be reproduced by starting out from
codon representation of the rank 3 symplectic algebra s~6!
and breaking the symmetry through the following chain
subalgebras:

sp~6!.sp~4!%su~2!.su~2!%su~2!%su~2!

.su~2!%u~1!* %su~2!.su~2!%u~1!* %u~1!F. ~1!

The asterisk in the second u~1! indicates that the states a
labeled byL2,z

2 rather than byL2,z , and the superscriptF in
the third u~1! means that the some multiplets have duri
this last step of the symmetry breaking remained unbrok
or frozen. The branching rules for this chain are given
Table II and the weight diagram of the codon representa
of sp~6! is shown in Fig. 1.

In the aforementioned analysis, local properties have b
taken into account. In mathematical terms, the search
performed in the context of Lie algebras, not of Lie grou
In the present paper, we report on results obtained by in
porating global aspects.

The first observation is that the symmetry breaking fro
su~2! to u(1)* referred to above can be interpreted as a fu
fledged symmetry breaking from the group SU~2! to its
maximal subgroup U~1!*5Z23U~1!>O~2!, which consists
of two connected components and is larger than the max
connected subgroup U~1!>SO~2!. The distinction between
the two can be implemented naturally at the level of L
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groups, but not of Lie algebras. The additional Z2 factor,
which can be represented, e.g., byi times the first Pauli
matrix s1 , has exactly the effect of transforming states
opposite magnetic quantum number,1m and2m, into each
other. In terms of groups, the symmetry breaking in t
model of Ref.@2# can be summarized as follows. Step 1: t
primordial symplectic group Sp~6! is broken to its maximal
connected subgroup Sp~4!3SU~2!; step 2: the Sp~4! factor is
broken to its maximal connected subgroup SU~2!3SU~2!;
step 3: the second SU~2! factor is broken to its maxima
subgroup U~1!*5Z23U~1!; step 4: the third SU~2! factor is

FIG. 1. Weight diagram of the codon representation of sp~6!. In
the small interior octahedron the weights are fourfold degenerat
the center of the hexagons the weights are twofold degenerate
the others are nondegenerate.
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7080 56FORGER, HORNOS, AND HORNOS
partly broken to its maximal connected subgroup U~1!,
where the term ‘‘partly’’ refers to the freezing phenomeno
as explained in Ref.@2#.

With this interpretation in mind, we have reexamined th
possible chains originating from simple Lie groups of low
rank ~2 and 3!, relaxing the purely algebraic assumptions o
Ref. @1# to allow for symmetry breaking through noncon
nected subgroups in the second stage of the proced
@breaking of products of SU~2! subgroups#. The result is that
besides the chain~1!, there appears a single new chain:

G2.su~2!%su~2!.su~2!%u~1!*.su~2!%u~1!F. ~2!

The branching rules for this chain are given in Table III, an
the weight diagram of the codon representation of G2 is
shown in Fig. 2. In terms of groups, the symmetry breakin
in this model can be summarized as follows. Step 1: t
primordial group G2 is broken to its maximal subgroup
SU~2!3SU~2!; step 2: the second SU~2! factor is broken to
its maximal subgroup U(1)* ; step 3: the second SU~2! fac-
tor is partly further broken to its maximal connected su
group U~1!, where again the term ‘‘partly’’ refers to the
freezing phenomenon.

The main advantage of this model is the low rank of th
group. However, freezing in the last step is in this case mo
the rule than the exception: the majority of the SU~2!3U~1!*
multiplets must be frozen. If no freezing occurred, th

TABLE III. The symbol ‘‘hw’’ means ‘‘highest weight,’’
whereassi andmi denote the spin and the magnetic quantum num
ber with respect to thei th su~2!. The shading indicates the multi-
plets, which in the last step are frozen.
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scheme would generate 30 amino acids, with rather stra
splittings of all sextuplets into triplets and the appearance
many singlets.

In both chains, all steps except the last correspond
complete symmetry breaking of groups to subgroups and
therefore consistent with the picture of a spontaneously b
ken symmetry.

In analogy to the procedure adopted in nuclear physics@7#
or molecular physics@8# when dealing with spectrum gene
ating algebras, each of these symmetry chains can be re
sented using the Casimir operators of the subalgebras
appear in the chain, which automatically form a family
commuting operators. The operatorH associated with the
chain is a polynomial in these Casimir operators that to e
of the 21 degenerate subspaces appearing at the end o
chain associates a different eigenvalue. For the codon re
sentation of sp~6! it is

Hsp~6!5h01h1Csp~4!1q1L1
21q2L2

21q3L3
21p2L2,z

2

1p3~L1
21L2

2!~L3
222!L3,z , ~3!

and for the codon representation of G2 it is

HG2
5h01q1L1

21q2L2
21p2L2,z

2

1p3~L2
222!~L2

226!~L2
2235/4!L2,z , ~4!

whereh0 , q1 , q2 , q3 , p2 , and p3 are arbitrary constants
Csp(4) is the quadratic Casimir operator of sp~4!, L1

2,L2
2,L3

2

are the squared angular momentum operators for the su~2!’s
and L2,z , L3,z the z components of the angular momentu

FIG. 2. Weight diagram of the codon representation of G2. The
weights represented by triangles are fourfold degenerate, the b
circles are twofold degenerate, and the white circles are nonde
erate.

-



e
i

,

to
t

od
ou
th
n
u

lin
la
on
ul

e
rs
uc
o
r

g

ell-
try

nd
nal
ell

eitz
ron
gons
the
ent
o-

oot

t
u

nta-
ing
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operators for the u~1!’s involved; note thatL2 is the Casimir
operator of su~2! andLz is the invariant operator of u~1!. The
factors that multiply theLz operators are responsible for th
freezing. Note further that in both chains the freezing term
a polynomial in the squared angular momentum operators
order 6 in the G2 chain and only of order 4 in the sp~6! chain.

The assignment of amino acids to representation vec
in the codon space must be performed in accordance with
restrictions imposed by the degeneracy of the genetic c
This requirement alone, however, leaves an enorm
amount of freedom. Rearrangements of amino acids with
same degeneracy will be possible in 3!5!2!9!2! differe
ways, reflecting the freedom in assigning the sextuplets, q
druplets, triplets, doublets, and singlets, respectively, tota
more than a billion alternatives. The selection of a particu
option must be performed using arguments that go bey
the restrictions imposed by degeneracy alone. A partic
assignment has been proposed in Ref.@2#, where chemical
and biological properties of the amino acids, such as th
polarities or their presumed role in the evolution of the fi
forms of life, have been used as a guide. However, s
considerations can be performed from different points
view, depending, for example, on which biological prope
ties are emphasized.

In the following, we show how one can obtain stron
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restrictions on these degrees of freedom by combining w
established biochemical facts with further global symme
considerations.

The weight diagram of the codon representation of sp~6!
shown in Fig. 1 is formed by a small interior octahedron a
a large exterior truncated octahedron, with eight hexago
faces and six square faces; this geometric figure is w
known in solid state physics as the surface of a Wigner-S
cell. The weights in the vertices of the truncated octahed
are nondegenerate, the weights in the center of the hexa
are twofold degenerate, and the weights in the vertices of
interior octahedron are fourfold degenerate. It is conveni
to divide the weight diagram into five horizontal planes, l
cated atz511, 11/2, 0, 21/2, and21, respectively, and
related by a symmetry along the vertical axis, so that the r
generators~raising and lowering operators! of the sp~4! sub-
algebra and in particular of the first two su~2! subalgebras ac
along the horizontal planes, whereas those of the third s~2!
subalgebra act along the vertical axis~third coordinate axis!.
@In fact, those of the first and/or second su~2! subalgebra act
along the first and/or second coordinate axis.#

This leads to a natural distinction between the represe
tions that appear after the first step of the symmetry break
@from sp~6! to sp~4! % su~2!#; cf. Table II. We shall call
representation vectors in the codon spacebosonicor tenso-
d
tion
m
of
TABLE IV. New proposal for codon and amino acid assignments in the sp~6! model. States are labele
asuk1 ,k2 ;s1 ,s2 ,s3 ,m1 ,m2 ,m3&, wherek1 ,k2 are the components of the highest weight of the representa
of the sp~4! subalgebra that the state belongs to, whereassi andmi denote the spin and the magnetic quantu
number with respect to thetth su~2! subalgebra.~The assignments marked by an asterisk differ from those
Table II of Ref.@2#.!

Type of
state

Quantum numbers
uk1 ,k2 ;s1 ,s2 ,s3 ,m1 ,m2 ,m3&

Amino
acid Codons

u1,0;0,1/2,1;0,61/2,(61,0)& Leu CUU, CUC, CUA
Vector CUG, UUA, UUG
bosons u1,0;1/2,0,1;61/2,0,(61,0)& Ser UCU, UCC, UCA

UCG, AGU, AGC

u1,1;1,1/2,0;(61,0),61/2,0& Arg CGC, CGG, CGU
CGA, AGA, AGG

u1,1;1/2,1,0;61/2,61,0& Ala GCC, GCG, GCU, GCA
u1,1;1/2,1,0;61/2,0,0& Phe* UUU, UUC
u1,1;0,1/2,0;0,61/2,0& Asp GAU, GAC

Scalar u1,1;1/2,0,0;61/2,0,0& Glu GAA, GAG
bosons u1,0;0,1/2,0;0,61/2,0& Asn* AAU, AAC

u1,0;1/2,0,0;61/2,0,0& Lys* AAA, AAG

u0,1;1/2,1/2,1/2;61/2,61/2,11/2& Thr ACU, ACC, ACA, ACG
u0,1;1/2,1/2,1/2;61/2,61/2,21/2& Val GUU, GUC, GUA, GUG
u2,0;1/2,1/2,/1/2;61/2,61/2,11/2& Pro CCU, CCC, CCA, CCG
u2,0;1/2,1/2,1/2;61/2,61/2,21/2& Gly GGU, GGC, GGA, GGG

u0,1;0,0,1/2;0,0,61/2& Gln* CAA, CAG
u0,0;0,0,1/2;0,0,61/2& His* CAU, CAC

Fermions u2,0;0,1,1/2;0,61,11/2& Tyr* UAU, UAC
u2,0;0,1,1/2;0,61,21/2& Cys* UGU, UGC
u2,0;0,1,1/2;0,0,11/2& Trp UGG
u2,0;0,1,1/2;0,0,21/2& Met AUG

u2,0;1,0,1/2;(61,0),0,11/2& Ile AUU, AUC, AUA
u2,0;1,0,1/2;(61,0),0,21/2& Term UAA, UAG, UGA
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7082 56FORGER, HORNOS, AND HORNOS
rial if they belong to representations of the third su~2! sub-
algebra with integer spin andfermionic or spinorial if they
belong to representations of the third su~2! subalgebra with
half-integer spin. The tensorial representations are assoc
to the rotation group SO~3! while the spinorial ones requir
its universal covering group SU~2!: both have the same Lie
algebra but are globally different. In the sp~6! weight dia-
gram, the bosonic states are the ones located in the pl
z511, 0, 21 and the fermionic states are the ones loca
in the planes atz511/2, 21/2; note that there are exact
32 bosonic states and 32 fermionic states.

We now present an amino acid and codon assignment
is slightly different from the tentative assignment presen
in Ref. @2#, based on combining two important biologic
facts with certain discrete symmetries in the codon spac
is well known that the two helices of DNA are compleme
tary under the Watson-Crick pairing rule, which states thaC
pairs withG andU pairs withA; this is also true for the firs
two bases in the codon-anticodon recognition. Mathem
cally, this rule can be expressed as a principle of dual
every nucleic baseX has a canonical dual nucleic baseX†:

A†5U, C†5G, G†5C, U†5A.

This duality will be referred to asWatson-Crick~or WC!
duality; it reminds us of the symplectic symmetry in mecha
ics or thermodynamics where dynamical variables alw
come in canonically conjugate pairs. Similarly, every cod
XYZ has a canonical WC dual codon (XYZ)†5Z†Y†X†;
note the inversion of order, which is mathematically comp
ling and corresponds to the biological fact that the two h
ces in a DNA molecule run in antiparallel directions. A
other obvious and useful fact is the weak dependence of
meaning of a codon on the third base, which has led mole
lar biologists to organize the rules of the genetic code in
~by now standard! form of Table I, where codons are a
sembled in family boxes: all codons starting with the sa
two bases form a family box, and in 8 of the 16 fami
boxes, they all code for the same amino acid. This leads u
introduce a notion ofpartial Watson-Crick duality for
codons, which refers only to the first two bases: thus
partial WC dual of a codonXYN is, by definition, the codon
Y†X†N.

The new assignment is obtained by imposing the follo
ing two invariance principles:~1! Principle of family box
completeness:Codons in the same family box (XYN; N
5U,C,A,G) are either all bosonic or all fermionic.~2! Prin-
ciple of Watson-Crick (or WC) dual completeness:For any
codon that is bosonic or fermionic, the corresponding par
iol
ted
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WC dual codon must also be bosonic or fermionic, resp
tively.

A simple inspection of the dimensions of the multiplets
the sp~6! model~Table II! shows that the triplets and single
are fermionic and the sextuplets are bosonic. Family b
completeness then requires the phenylalanine codons to l
the bosonic sector and the cysteine and tyrosine codons t
in the fermionic sector, in order to complete the family box
CGN ~arginine!, AGN ~serine, arginine!, UCN ~serine!,
CUN ~leucine!, UUN ~phenylalanine, leucine! in the
bosonic sector andUAN ~tyrosine, termination!, UGN ~cys-
teine, termination, tryptophan!, AUN ~isoleucine, methion-
ine! in the fermionic sector. Next, WC dual completene
forces the codons in the family boxesGAN ~the dual of
UCN!, for aspartic and glutamic acid, andAAN ~the dual of
UUN!, for aspartine and lysine, to belong to the boso
sector and the codons in the family boxCAN ~the dual of
UGN!, for histamine and glutamine, to belong to the ferm
onic sector. All that remains to be done is the allocation
the five quadruplets: one of them will be bosonic and
other four will be fermionic. Family box completeness w
be fulfilled by any assignment, but WC dual completene
requires the bosonic quadruplet to be self-dual. The qua
plets are proline (CCN), glycine (GGN), valine (GUN),
threonine (ACN), and alanine (GCN), and since only the
alanine codons are self-dual, we arrive at the following list
family boxes:

bosonic:UUN, AAN, CGN, AGN, CUN, UCN, GAN,
GCN,

fermionic: UAN, AUN, UGN, CAN, CCN, GGN,
GUN, ACN.
The resulting codon and amino acid assignment is show
Table IV. Interestingly, one arrives at exactly the same
signment if, maintaining the requirement of family box com
pleteness, one replaces the condition of WC dual compl
ness by the condition ofinvariance under permutation of th
first two bases.

Concluding, we reemphasize the statement already m
in Ref. @2# that symmetry considerations alone cannot
place a microscopic model but just establish a general ba
ground.

Beyond the description of the evolution of the gene
code as a symmetry breaking process, the symmetry p
ciples can also serve as a guiding line for the formulation
a dynamical model.
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